Search results for "inverse boundary value problem"
showing 5 items of 5 documents
Optimality of Increasing Stability for an Inverse Boundary Value Problem
2021
In this work we study the optimality of increasing stability of the inverse boundary value problem (IBVP) for the Schrödinger equation. The rigorous justification of increasing stability for the IBVP for the Schrödinger equation were established by Isakov [Discrete Contin. Dyn. Syst. Ser. S, 4 (2011), pp. 631--640] and by Isakov et al. [Inverse Problems and Applications, Contemp. Math. 615, American Math Society, Providence, RI, 2014, pp. 131--141]. In [Discrete Contin. Dyn. Syst. Ser. S, 4 (2011), pp. 631--640] and [Inverse Problems and Applications, Contemp. Math. 615, American Math Society, Providence, RI, 2014, pp. 131--141], the authors showed that the stability of this IBVP increases …
The Calderon problem in transversally anisotropic geometries
2016
We consider the anisotropic Calderon problem of recovering a conductivity matrix or a Riemannian metric from electrical boundary measurements in three and higher dimensions. In the earlier work \cite{DKSaU}, it was shown that a metric in a fixed conformal class is uniquely determined by boundary measurements under two conditions: (1) the metric is conformally transversally anisotropic (CTA), and (2) the transversal manifold is simple. In this paper we will consider geometries satisfying (1) but not (2). The first main result states that the boundary measurements uniquely determine a mixed Fourier transform / attenuated geodesic ray transform (or integral against a more general semiclassical…
Stability of the Calderón problem in admissible geometries
2014
In this paper we prove log log type stability estimates for inverse boundary value problems on admissible Riemannian manifolds of dimension n ≥ 3. The stability estimates correspond to the uniqueness results in [13]. These inverse problems arise naturally when studying the anisotropic Calderon problem. peerReviewed
Superconductive and insulating inclusions for linear and non-linear conductivity equations
2015
We detect an inclusion with infinite conductivity from boundary measurements represented by the Dirichlet-to-Neumann map for the conductivity equation. We use both the enclosure method and the probe method. We use the enclosure method to prove partial results when the underlying equation is the quasilinear $p$-Laplace equation. Further, we rigorously treat the forward problem for the partial differential equation $\operatorname{div}(\sigma\lvert\nabla u\rvert^{p-2}\nabla u)=0$ where the measurable conductivity $\sigma\colon\Omega\to[0,\infty]$ is zero or infinity in large sets and $1<p<\infty$.
Inverse problems for elliptic equations with power type nonlinearities
2021
We introduce a method for solving Calder\'on type inverse problems for semilinear equations with power type nonlinearities. The method is based on higher order linearizations, and it allows one to solve inverse problems for certain nonlinear equations in cases where the solution for a corresponding linear equation is not known. Assuming the knowledge of a nonlinear Dirichlet-to-Neumann map, we determine both a potential and a conformal manifold simultaneously in dimension $2$, and a potential on transversally anisotropic manifolds in dimensions $n \geq 3$. In the Euclidean case, we show that one can solve the Calder\'on problem for certain semilinear equations in a surprisingly simple way w…